Internals
Others
EvoLinear.Linear.update_∇! — Functionupdate_∇!(L, ∇¹, ∇², x, y, p, w)Update gradients w.r.t each feature. Each feature gradient update is dispatch according to the loss type (mse, logistic...).
EvoLinear.Linear.predict_linear — Functionpredict_linear(m, x)Returns the predictions on the linear basis from model m using the features matrix x.
Arguments
m::EvoLinearModel: model generating the predictions.x: features matrix[nobs, num_features]for which predictions are generated.
EvoLinear.Linear.predict_proj — Functionpredict_proj(m, x)Returns the predictions on the projected basis from model m using the features matrix x.
MSE:pred_proj = pred_linearLogistic:pred_proj = sigmoid(pred_linear)Poisson:pred_proj = exp(pred_linear)Gamma:pred_proj = exp(pred_linear)Tweedie:pred_proj = exp(pred_linear)
Arguments
m::EvoLinearModel: model generating the predictions.x: features matrix[nobs, num_features]for which predictions are generated.